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Abstract

HN and H2 optimization problems with respect to a dynamic vibration absorber (DVA) in a single degree-of-freedom

(sdof) system are classical optimization problems and solutions to them were found about half a century ago. Numerical

solutions to the HN and H2 optimization problems with respect to DVA for a multi-degree-of-freedom (mdof) or

continuous system can be found in the literature but their analytical solutions have not yet been found. In this article, we

report the derivation of an analytical solution to the HN and H2 optimization problems of DVA applied to suppress

random vibrations in plate structures. Analytical formulae are also proposed to express the optimal tuning frequency and

damping ratios of the absorber. The established theory improves our understanding of the effects of different parameters

including the mass, damping and tuning ratios and also the point of attachment of the absorber on the vibration

absorption by the absorber. Numerical results show the usefulness of the optimization solutions in comparison to solutions

suggested by other researchers based on other approaches to the problem.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Using a passively tuned dynamic vibration absorber (DVA) is one way to suppress random vibration in
mechanical and civil structures. It was invented by Frahm [1] in 1911. In 1928, Ormondroyd and Den Hartog
[2] pointed out that the damping of the DVA had an optimum value for the minimization of the amplitude
response of the sdof system at resonance. Such optimization criterion is now known as HN optimization. The
fixed-points theory of Den Hartog [3] was commonly used for the determination of the optimum tuning
frequency and damping ratios of the DVA attached to an sdof vibrating system.

H2 optimization of the vibration absorber has the objective function of minimizing the total vibration
energy of the primary structure under white noise excitation. In 1963, Crandall and Mark [4] found out the H2

optimized tuning frequency and damping ratios for the sdof system.
Some recent research work on the optimum tuning of DVA for sdof systems can be found in the reports of

Asami et al. [5,6]. They derived the analytical solutions to HN and H2 optimization problems of DVAs
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a Fourier coefficient of g

b Fourier coefficient of d
c damping coefficient of the absorber
D flexural rigidity
E modulus of elasticity
f normalized frequency
g deterministic spatial function of the

externally applied force
h thickness of the plate
j ¼

ffiffiffiffiffiffiffi
�1
p

k stiffness of the absorber
Lx, Ly length and width of the plate
m mass of the absorber
n Fourier coefficient of u

N Laplace transform of n

p, q indices of the eigenmodes
R Laplace transform of r

s Laplace variable
S spectral density of the vibration re-

sponse of the plate
t time variable
T tuning ratio of the absorber
u dynamic displacement of the plate
U Laplace transform of u

_U velocity amplitude of the plate
€U acceleration amplitude of the plate

w stationary random function of time of
the externally applied force

W Laplace transform of w

x, y spatial variables
Z non-dimensional frequency response

function of the plate
n Poisson ratio
r material density
z damping ratio of the absorber
j eigenfunction of the plate without the

absorber
g non-dimensional natural frequency of

the plate
o natural frequency of the plate without

the absorber
oa undamped natural frequency of the

absorber
oab, jab frequency and shape of the abth mode

at which the absorber is tuned for
vibration control

m mass ratio between the masses of the
absorber and the plate

e equivalent mass ratio
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attached to damped linear systems. Research works found in the literature on the optimum tuning of DVA for
the mdof system or the continuous system are mostly numerical optimization methods. Rice [7] reported the
use of a SIMPLEX nonlinear optimization procedure to determine the HN optimum tuning of a vibration
absorber applied for suppressing the vibration of a beam. Hadi and Arfiadi [8] used a genetic algorithm to
solve numerically the H2-optimized tuning frequency and damping ratios for mdof systems. Jacquot [9]
proposed a transfer function of the plate attached with a DVA. He set the frequency ratio to one and
determined the optimum damping ratio of the absorber based on the transfer function. However, it is shown in
the latter sections of this article that the optimum frequency ratio of the absorber is in general not equal to one
and another set of optimum frequency and damping ratios has been derived based on the proposed analytical
model. Dayou [10] applied the fixed-points theory [3] and proposed a set of optimum frequency and damping
ratios for global control of the kinetic energy of a continuous structure using DVA. Zuo and Nayfeh [11] and
Wong et al. [12] studied DVA of two-degree-of-freedom for suppressing vibration in the sdof system and in
beams under forced single harmonic vibration, respectively.

In this article, a theory is established for describing the excitation–response relation leading to the HN and
H2 optimum tuning of the DVA attached onto a plate structure. The present case is much more complicated
than an sdof structure because an improper selection of attachment point for the absorber may lead to an
amplification of vibration in other parts of the structure [12]. The established theory improves our
understanding of the effects of different parameters including the mass, damping and tuning ratios and also
the point of attachment of the absorber on the vibration absorption by the absorber. The optimum tuning as
derived in this article based on the fixed-points theory [3] includes tuning frequency and damping ratios of the
absorber and also the position of the absorber on the vibrating structure. The objective of the optimum tuning
is to minimize vibrational displacement, velocity and acceleration of a point on the plate as well as the
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minimization of root mean square motion over the whole domain of the plate. The numerical simulations are
used to show the usefulness of the optimization solutions leading to better vibration control in continuous
systems than those suggested by other researchers [9,10] based on other approaches to the problem.

2. Theory

Consider a thin rectangular plate on the rectangular domain 0pxpLx and 0pypLy that carries a DVA at
point (xo, yo) as shown in Fig. 1. The plate is under external distributed force w(t)g(x,y) and the point force r(t) is
transmitted to the plate by the attached dynamic absorber. The equation of motion for the plate may be written as

r4uþ
rh

D

q2u
qt2
¼

wðtÞgðx; yÞ

D
þ

rðtÞ

D
dðx� xoÞdðy� yoÞ, (1)

where the flexural rigidity of the plate D is defined as

D ¼
Eh3

12ð1� n2Þ
(2)

and where E is the modulus of elasticity, n the Poisson ratio, h the thickness of the plate and r the material density.
It is assumed that the externally applied forcing function is w(t)g(x, y), where g(x, y) is a deterministic

function of x and y, and w(t) is a stationary random function of time. The equation of motion of the free
vibration of the plate without the absorber may be written as

r4jpqðx; yÞ ¼
rh

D
o2

pqjpqðx; yÞ, (3)

where opq and jpq(x,y) are the pqth natural frequency and eigenfunction of the plate without the absorber,
respectively. The solution to Eq. (1) can be expanded in a Fourier series written as

uðx; y; tÞ ¼
X1

p¼1;q¼1

npqðtÞjpqðx; yÞ. (4)

Similarly, the spatial part of the forcing function can be expanded as

gðx; yÞ ¼
X1

p¼1;q¼1

apqjpqðx; yÞ. (5)
yo

Lx

Ly

xo

w(t)g(x,y)

Fig. 1. A simply supported rectangular plate under external distributed force f and carrying a dynamic vibration absorber at point (xo, yo).
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The Dirac delta functions can also be expanded as

dðx� xoÞdðy� yoÞ ¼
X1

p¼1;q¼1

bpqjpqðx; yÞ, (6)

where the Fourier coefficients apq and bpq are, respectively,

apq ¼
1

LxLy

� �Z a

0

Z b

0

gðx; yÞjpqðx; yÞdy dx (7)

and

bpq ¼
1

LxLy

� �
jpqðxo; yoÞ. (8)

Substituting Eqs. (4)–(6) into Eq. (1) and performing Laplace transformation on the resulting equation with
respect to time, the result may be written as

X1
p¼1;q¼1

rh

D
o2

pqNpqðsÞ þ
rh

D
s2NpqðsÞ �

apq

D
W ðsÞ �

bpq

D
RðsÞ

� �
jijðx; yÞ ¼ 0; p; q ¼ 1; 2; 3; . . . , (9)

where Npq(s), R(s)and W(s) are the Laplace transform of npq(t), r(t) and w(t), respectively.
Since the eigenvectors jpq(x) are linearly independent, we may write

rh

D
o2

pqNpqðsÞ þ
rh

D
s2NpqðsÞ �

apq

D
W ðsÞ �

bpq

D
RðsÞ ¼ 0; p; q ¼ 1; 2; 3; . . . . (10)

From Eq. (10) above, the generalized co-ordinates Npq(s) may be written as

NpqðsÞ ¼
1

rh

� �
apqW ðsÞ þ bpqRðsÞ

o2
pq þ s2

" #
. (11)

Performing Laplace transformation on Eq. (4) and eliminating Npq(s) in the resulting equation with
Eq. (11), the s-domain motion of any point on the plate could be written as

Uðx; y; sÞ ¼
1

rh

X1
p¼1;q¼1

apqW ðsÞ þ bpqRðsÞ

o2
pq þ s2

" #
jpqðx; yÞ, (12)

where U(x, y, s) is the Laplace transform of u(x, y, t) with respect to time.
The force transmitted to the beam at the point of attachment may be written as

RðsÞ ¼ �Uðxo; yo; sÞ
ms2ðcsþ kÞ

ms2 þ csþ k

� �
. (13)

The functions R(s) in Eq. (12) can be eliminated using Eq. (13) to give

Uðx; y; sÞ ¼
1

rh

X1
p¼1;q¼1

apqW ðsÞ � bpq

ms2ðcsþ kÞ

ms2 þ csþ k
Uðxo; yo; sÞ

o2
pq þ s2

2
664

3
775jpqðx; yÞ. (14)

This expresses the motion of an arbitrary point (x, y) on the vibrating plate in terms of the forcing function
W(s) and the motion at the point of attachment (xo, yo). This relation would definitely be valid at the
attachment point (xo, yo) leading to

Uðxo; yo; sÞ ¼
1

rh

X1
p¼1;q¼1

apqW ðsÞ � bpq

ms2ðcsþ kÞ

ms2 þ csþ k
Uðxo; yo; sÞ

o2
pq þ s2

2
664

3
775jpqðx; yÞ. (15)
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This can be rearranged to arrive at a transfer function between W(s) and U(xo, yo, s) written as

Uðxo; yo; sÞ

W ðsÞ
¼

1
rh

P1
p¼1;q¼1

apqjpqðxo; yoÞ

o2
pq þ s2

1þ 1
rh

ms2ðcsþ kÞ

ms2 þ csþ k

� �P1
p¼1;q¼1

bijjijðxo; yoÞ

o2
pq þ s2

. (16)

Now it is appropriate to define the following non–dimensional parameters:m ¼ m=rhLxLy is the mass ratio
between the masses of the absorber and the plate; z ¼ c

�
2
ffiffiffiffiffiffiffi
mk
p

the damping ratio of the absorber; oa ¼ffiffiffiffiffiffiffiffiffi
k=m

p
the undamped natural frequency of the absorber; T ¼ oa=oab is the ratio between the absorber

frequency and a reference natural frequency oab of the plate; gpq ¼ opq=oab is the non-dimensional natural
frequency of the plate referred to oab and f ¼ o/oab is the normalized frequency.

The frequency response function of the plate can be obtained by substituting Eq. (16) into Eq. (14) and
replacing s by jo in the resulting equation written in the non-dimensional form as

Uðx; y; f Þ

W ðf Þ
¼

1

rho2
ab

X1
p¼1;q¼1

apq � bpq

mab
P1

p¼1;q¼1

apqjpqðxo; yoÞ

g2pq � f 2

�f 2
þ 2zTf þ T2

�f 2
ð2zTf þ T2Þ

þmab
P1

i¼1;j¼1

bpqjpqðxo; yoÞ

g2pq � f 2

2
66664

3
77775

g2pq � f 2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

jpqðx; yÞ, (17)

where j ¼
ffiffiffiffiffiffiffi
�1
p

. The transfer functions of the velocity and the acceleration responses at point (x, y) on the
plate surface may be written, respectively, as

_Uðx; y; f Þ

oabW ðf Þ
¼ jf

Uðx; y; f Þ

W ðf Þ
(18)

and

€Uðx; y; f Þ

o2
abW ðf Þ

¼ �f 2 Uðx; y; f Þ

W ðf Þ
. (19)

2.1. Optimization for minimizing the vibration at a point (x, y) on the plate

For a structure with well-separated natural frequencies, the modal displacement response in the vicinity of
the uvth natural frequency may be approximated by considering p ¼ a and q ¼ b and ignoring other modes in
Eq. (17). Eq. (17) may then be written as

Uðx; y; f Þ

W ðf Þ
¼

aabjabðx; yÞ

rho2
ab

 ! 1� bab

mLxLy

jabðxo; yoÞ

1� f 2

�
�f 2
þ 2jzTf þ T2

f 2
ð2jzTf þ T2Þ

þmLxLy

babjabðxo; yoÞ

1� f 2

� �
1� f 2

2
666666666664

3
777777777775

¼
aabjabðx; yÞ

rho2
ab

 !
T2 � f 2

þ 2jzTf

ð2jzTf þ T2 � f 2
Þð1� f 2

Þ � �f 2
ð2jzTf þ T2Þ

� �
¼

aabjabðx; yÞ

rho2
ab

 !
Zðf Þ (20)
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where

Zðf Þ ¼
T2 � f 2

þ 2jzTf

ð2jzTf þ T2 � f 2
Þð1� f 2

Þ � �f 2
ð2jzTf þ T2Þ

¼
rho2

abUðx; y; f Þ

aabjabðx; yÞW ðf Þ

" #
(21a)

is the non-dimensional frequency response of the plate, and

� ¼ mj2
abðxo; yoÞ. (21b)

The objective of HN optimization is to minimize the maximum vibration amplitude response at the point
(x, y) and the performance index may be defined as

H1_pt_disp ¼ inf
f

sup
z;T

Uðx; y; f Þ

W ðf Þ

����
����

� � !
. (22a)

Similarly, the performance indices of HN optimization for minimizing the maximum velocity and
acceleration amplitude responses at the point (x, y) may be defined, respectively, as

H1_pt_vel ¼ inf
f

sup
z;T

_Uðx; y; f Þ

oabW ðf Þ

����
����

� � !
(22b)

and

H1_pt_acc ¼ inf
f

sup
z;T

€Uðx; y; f Þ

o2
abW ðf Þ

�����
�����

 ! !
. (22c)

The expression Z(f) in Eq. (20) is equivalent to the amplitude ratio as derived by Den Hartog [3] in the sdof
system attached with a DVA if the term e in Eq. (21a) is replaced by the mass ratio m. e may therefore be
considered as the equivalent mass ratio for applying a vibration absorber to control vibrations
in plate structures. The optimum frequency and damping ratios, and the height of the fixed points in the
frequency spectrum of the primary system in Eqs. (22a)–(22c) for HN optimization can be derived based
on the fixed-points theory in the same way as in the case of the sdof system [5,6], and the results are
listed in Table 1.

The objective of H2 optimization of the absorber is to minimize the total vibration energy of the
mass at point (x, y) of the plate of all frequencies in the system and the performance index may be
defined as [4]

H2_pt ¼ inf
z;T

E½U2�

2pSFoab=D2

 !
, (23)
Table 1

The approximated HN tuning of the plate for control of vibration at point (x, y) and the height of the fixed points in the response spectrum

Transfer function Tuning ratio Damping ratio Height of the fixed points in the response spectrum

Uðx; y; f Þ

W ðf Þ

1

1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

8ð1þ �Þ

s
aabjabðx; yÞ

rho2
ab

ffiffiffiffiffiffiffiffiffiffiffi
2

�
þ 1

r

_Uðx; y; f Þ

oabW ðf Þ

1

1þ �

ffiffiffiffiffiffiffiffiffiffiffi
2þ �

2

r
1

4ð2þ �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð24þ 24�þ 5�2Þ

1þ �

s
aabjabðx; yÞ

rho2
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
�

1

1þ �

r

€Uðx; y; f Þ

o2
abW ðf Þ

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ �

r
1

2

ffiffiffiffiffiffiffiffiffiffiffi
3�

2þ �

r
aabjabðx; yÞ

rho2
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
�

2

1þ �

r
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where E[U2] is the ensemble mean of U2 and SF is the spectral density of the excitation. The optimum
tuning frequency ratio and damping ratio for H2 optimization of the system can be derived based on the
fixed-points theory as [5]

Td ¼
1

ð1þ �Þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ

2

�

r
(24a)

and

zH2
¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4þ 3�Þ

2ð1þ �Þð2þ �Þ

s
. (24b)

If the forcing function w(t) has power spectral density SF(f), the spectral density of the vibration response of
the point (x, y) on the plate may be written as

Suðx; y; f Þ ¼
Uðx; y; f Þ

W ðf Þ

����
����
2

SF ðf Þ. (25)

With the optimum frequency and damping ratios as expressed in Eqs. (24a) and (24b), the mean square
motion at point (x, y) can be derived as [5]

s2uðx; yÞ ¼
oab

2p

Z 1
�1

Uðx; y; f Þ

W ðf Þ

����
����
2

SF ðf Þdf ¼
oab

2

aabjabðx; yÞ

rho2
ab

 !2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 4

�ð�þ 1Þ

s
. (26)

2.2. Optimization for minimizing the root mean square motion over the whole domain of the plate

Using Eq. (17) and integrating the square of amplitude response over the whole domain of the plate, we may
write

Z a

0

Z b

0

Uðx; y; f Þ

W ðf Þ

� �2

dydx ¼

Z Lx

0

Z Ly

0

1

rho2
ab

 !2 X1
p¼1;q¼1

apq �

bpqmLxLy

P1

p¼1;q¼1

apqjpqðxo; yoÞ

g2pq � f 2

f 2
� 2jzTf � T

f 2
ð2jzTf þ T2Þ

þmLxLy

P1

p¼1;q¼1

bpqjpqðxo; yoÞ

g2pq � f 2

 !
0
BBBB@

1
CCCCA

g2pq � f 2
jpqðx; yÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

2

dydx.

(27)

Considering the orthogonality relations of the eigenfunctions, we may write

Z Lx

0

Z Ly

0

jpqðx; yÞjabðx; yÞdydx ¼ 0 if paa or qab

andZ Lx

0

Z Ly

0

jpqðx; yÞjabðx; yÞdydx ¼ LxLy if p ¼ a and q ¼ b. (28)
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Eq. (27) can be simplified with the above orthogonality relations of the eigenfunctions as

Z Lx

0

Z Ly

0

Uðx; y; f Þ

W ðf Þ

� �2

dydx ¼
X1

p¼1;q¼1

LxLy

rho2
ab

apq �

bpqmLxLy

P1

p¼1;q¼1

apqjpqðxo; yoÞ

g2pq � f 2

f 2
� 2jzTf � T

f 2
ð2jzTf þ T2Þ

þmLxLy

P1

p¼1;q¼1

bpqjpqðxo; yoÞ

g2pq � f 2

 !
0
BBBB@

1
CCCCA

g2pq � f 2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

2

.

(29)

For a structure with well-separated natural frequencies, the mean square modal displacement response in
the vicinity of the abth natural frequency may be approximated by considering p ¼ a and q ¼ b and ignoring
other modes. Eq. (29) may be written as

Z Lx

0

Z Ly

0

Uðx; y; f Þ

W ðf Þ

� �2

dydx ¼
LxLy

rho2
ab

aab � bab

mLxLy

aabjabðxo; yoÞ

1� f 2

f 2
� 2jzTf � T

f 2
ð2jzTf þ T2Þ

þmLxLy

babjabðxo; yoÞ

1� f 2

� �
0
BBB@

1
CCCA

1� f 2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

2

. (30)

The root mean square amplitude response of the vibrating plate with an absorber may be written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Lx

0

Z Ly

0

Uðx; y; f Þ

W ðf Þ

� �2

dydx

s
¼

aabLxLy

rho2
ab

 ! 1� bab

mLxLy

jabðxo; yoÞ

1� f 2

f 2
� 2jzTf � T

f 2
ð2jzTf þ T2Þ

þmLxLy

babjabðxo; yoÞ

1� f 2

� �
1� f 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼
aabLxLy

rho2
ab

 !
T2 � f 2

þ 2jzTf

ð2jzTf þ T2 � f 2
Þð1� f 2

Þ � �f 2
ð2jzTf þ T2Þ

� �
¼

aabLxLy

rho2
ab

 !
Zðf Þ.

(31)

The magnitude of the root-mean-square amplitude response of the plate may be written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Lx

0

Z Ly

0

Uðx; y; f Þ

W ðf Þ

� �2

dy dx

s������
������ ¼

aab

rho2
ab

�����
�����jZðf Þj. (32)

The HN optimizations for minimizing root mean square motion, velocity and acceleration responses of the
whole plate are written, respectively, as

H1_plate_disp ¼ inf
f

sup
z;T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Lx

0

Z Ly

0

Uðx; y; f Þ

W ðf Þ

� �2

dydx

s������
������

0
@

1
A

0
@

1
A, (33a)
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H1_plate_vel ¼ inf
f

sup
z;T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Lx

0

Z Ly

0

_Uðx; y; f Þ

W ðf Þ

� �2

dydx

s������
������

0
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and

H1_plate_acc ¼ inf
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(33c)

The optimum tuning frequency and damping ratios and the height of the fixed points in the
frequency spectrum of the primary system in Eqs. (33a)–(33c) for HN optimization can be derived
based on the fixed-points theory as in the case of the sdof system [5,6] and the results are listed in
Table 2.

The objective of H2 optimization in this case is to minimize the vibration energy of the whole plate of all
frequencies of the system. The performance index in this case may be defined as

H2_plate ¼ inf
z;T

E
R Lx

0

R Ly

0
Uðx;y;f Þ

W ðf Þ

	 
2
dydx

� �
2pSf oab=D2

0
BB@

1
CCA. (34)

The frequency and damping ratios for H2 optimization of the system can be derived based on the fixed-
points theory as [5]

TH2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 2

�ð1þ �Þ2

s
(35a)

and

zH2
¼

1

2
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�ð4þ 3�Þ

2ð1þ �Þð2þ �Þ

s
. (35b)

The H2 optimization is the minimization of the root mean square motion response over the whole
domain of the plate under wide-band random excitation. With optimum frequency and damping ratios as
Table 2

The approximated HN tuning of the plate for control of vibration of the whole plate and the height of the fixed points in the response

spectrum

Transfer function Tuning ratio Damping ratio Height of the fixed points in the response spectrum
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expressed in Eqs. (35a) and (35b), the total mean square motion of the whole plate can be derived as [5]
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Z 1
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0
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 !2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 4

�ð�þ 1Þ

s
. (36)
3. Simulation results and discussion

3.1. Case 1: Minimization of the mean square vibration at one point of a plate (H2 optimization)

To test the usefulness of the derived H2 optimization solution for suppressing vibrations in plates, the
numerical case studied by Jacquot [9] was analyzed with the optimum tuning derived in the previous section
and the results were compared to those obtained by Jacquot. The vibration of a square plate with four sides
simply supported was considered. The eigenfunctions may be written as

jpq ¼ 2 sinðppxÞ sinðqpyÞ. (37)

The excitation was stationary and random in time, i.e. g(x, y) ¼ 1, and it was uniformly applied on the plate.
In this case,

apq ¼
8

pqp2
; p; q ¼ 2n� 1; n 2 N

else apq ¼ 0, (38)

bpq ¼ jpqðxo; yoÞ ¼ 2 sin ppxo sin qpyo; p; q 2 N. (39)

The dimensions of the plate were a ¼ 1m, b ¼ 1m and h ¼ 0.01m. The material of the plate was aluminum
of r ¼ 2.71� 103 kgm�3, E ¼ 6.9� 109 Pa and v ¼ 0.33. In the analysis made by Jacquot [9], the frequency
ratio was chosen as 1. The vibration mode required to be suppressed was a ¼ b ¼ 1. The attachment position
of the absorber on the plate was xo ¼ yo ¼ 0.5. The mass ratio and damping ratio for minimum mean square
motion at the attachment point were found to be 0.275 and 0.45, respectively, by Jacquot. In the current
analysis, the same mass ratio was used so that the result of vibration suppression could be compared to
that of Jacquot. The modal response amplitude at the point of attachment j11(xo, yo) was 2 and therefore e
was 1.1 according to Eq. (21b). The optimum frequency and damping ratios in this case were calculated to be
0.5929 and 0.3927, respectively, in applying Eqs. (24a) and (24b). The vibration amplitude response at point
(xo, yo) of the plate was calculated according to Eq. (17). The spectral density of the vibration amplitude
response at point (xo, yo) was calculated according to Eq. (25) and it was plotted in Fig. 2 and compared with
the corresponding curve by Jacquot (Eqs. (25) and (28) of Ref. [9]). The spectral density of the vibration
amplitude response at point (xo, yo) for the case of no absorber added was also plotted for comparison. It
could be observed in Fig. 2 that both Jacquot’s result and the present result provided vibration control at
point (xo, yo) of the plate. However, the mean square motion at point (xo, yo) of the plate with the proposed
frequency and damping ratios was found to be 55.8% smaller than that obtained by Jacquot. Jacquot also
reported that there was an optimum mass ratio leading to minimum mean square motion of the plate but no
particular optimum mass ratio could be found in applying the present theory. Based on Eqs. (21b) and (26), it
was observed that the mass ratio should be as high as possible in order to reduce the mean square motion of
the plate.

The exact values of tuning frequency and damping ratios for minimum mean square motion at the
attachment point of the plate were determined numerically with Eq. (17) as T ¼ 0.5854 and z ¼ 0.4162. The
difference of mean square motion of the plate at point (xo, yo) using the proposed and the exact set of T and z
was found to be 0.14%. This shows that the proposed optimum tuning frequency and damping ratios are quite
accurate even though they are determined based on the vibration response of only one mode of the plate.
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Fig. 2. Dimensionless motion power spectral density of a square plate with g(x, y) ¼ 1, m ¼ 0.275, xo ¼ yo ¼ a/2. - - - - - - -, Jacquot’s result

[9]; ——, present theory (Eq. (25)); – - – -, no absorber added.
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3.2. Case 2: Minimization of the kinetic energy of a vibrating beam (HN optimization)

To test the usefulness of the derived HN optimization solution for suppressing vibrations, a continuous
vibrating system, the numerical testing case for the minimization of the maximum kinetic energy of a vibrating
beam reported by Dayou [10], was studied by applying the present theory and the result was compared with
those obtained by Dayou. The vibrating beam considered by Dayou was a simply supported aluminum beam
excited by a point force of unit amplitude at 0.1L as shown in Fig. 3. The eigenfunctions and eigenvalues of the
beam could be written, respectively, as [13]

jpðxÞ ¼ sin
ppx

L

	 

; p ¼ 1; 2; 3; . . . (40)

and

o2
p ¼

pp
L

	 
4 EI

rA

� �
; p ¼ 1; 2; 3 . . . (41)

where L ¼ 1m, E ¼ 207GPa, I ¼ 8.1295� 10�10m4, r ¼ 7870 kg/m3 and A ¼ 2.42� 10�4m2. A DVA was
attached at xo ¼ 0.5L and mass ratio, m, was 0.05.

From Eqs. (7) and (8), we have

ap ¼

R L

0
dðx� x1Þ sin

ppx
L

� �
dxR L

0 sin2 ppx
L

� �
dx
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2
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(42a)

and
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L

� �
R L

0
sin2 ppx

L

� �
dx
¼

2

L
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ppxo

L

	 

; p ¼ 1; 2; 3; . . . . (42b)

The optimization problem could be expressed as

H1_beam_vel ¼ inf
f
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z;T
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Fig. 4. Kinetic energy (in J/N2) of a simply supported beam with optimum vibration absorber fitted at xo ¼ 0.5L with the first natural

frequency as the control target: (a) figure showing all three modes; (b) in the vicinity of the first mode. - - - - - -, T ¼ 0.8333; z ¼ 0.25 [10];

——, T ¼ 0.8775, z ¼ 0.2556 (present theory).
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Fig. 3. Schematics of a simply supported beam with a vibration absorber excited by a random force at x ¼ 0.1L.
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where

Uðx; f Þ

W ðf Þ
¼

a1L

rho2
1

� �
T2 � f 2

þ 2jzTf

ð2jzTf þ T2 � f 2
Þð1� f 2

Þ � �f 2
ð2jzTf þ T2Þ

� �
(44)

and e ¼ mj1
2(xo), which was the one-dimensional version of the e used in the theory section.

According to Dayou [10], the optimum frequency and damping ratios were 1/1+e ¼ 0.8333 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�=8ð1þ �Þ

p
¼ 0:25, respectively. Based on the present theory and the derived expressions of the optimum

frequency and damping ratios for HN optimization with different types of transfer functions as shown in
Table 1, the frequency and damping ratios for minimum kinetic energy amplitude of the plate were

T ¼
1

1þ �

ffiffiffiffiffiffiffiffiffiffiffi
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2
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¼ 0:8740 and z ¼

1

4ð2þ �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð24þ 24�þ 5�2Þ

1þ �

s
¼ 0:2498; respectively.

Kinetic energy amplitudes of the whole beam at steady state were calculated at different excitation frequencies
according to the following equation:
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A Matlab program was written to calculate these kinetic energy amplitudes and the results are plotted in
Fig. 4a. Ten vibration modes (pmax ¼ 10) of the beam were used in the calculation. Both the kinetic energy of
the beam calculated based on the present theory and that by Dayou are plotted in Fig. 4a for comparison. The
amplitude of the kinetic energy at the first resonance of the beam was suppressed after adding the vibration
absorber. However, Fig. 4b shows a close-up of the spectrum around the first natural frequency of the beam,
and the heights of the two peaks of the curve of Dayou had a big difference, indicating that the damping and
frequency ratios of the absorber were not optimal based on the fixed-points theory [3]. The maximum
amplitude of the kinetic energy of the whole beam around the first natural frequency of the beam calculated
with the proposed frequency and damping ratios was found to be about 32% smaller than that of the beam
with the frequency ratio (T ¼ 0.8333) and damping ratio (z ¼ 0.25) used by Dayou [10].

The exact values of tuning frequency and damping ratios to minimize the maximum amplitude of the kinetic
energy of the whole beam around the first natural frequency of the beam were determined numerically with
Eq. (45) as T ¼ 0.8775 and z ¼ 0.2556. The difference of this maximum amplitude of kinetic energy in using
the proposed and the exact sets of T and z was found to be about 3%.

4. Conclusion

In this article, we have derived analytical solutions to the HN and H2 optimization problems of DVA
attached to a vibrating plate under random excitation. Expressions of the optimum tuning frequency and
damping ratios are derived for the absorber assuming single-mode vibration of the plate.

The optimum tuning frequency and damping ratios of the absorber derived in the present theory for solving
the HN and H2 optimization problems applied to vibrating plate structures have similar forms to those of the
sdof system. However, the tuning equations are based on the equivalent mass ratio e, which is a function of
both the mass ratio and the position of the absorber on the plate structure. Moreover, it is derived that both
the optimum tuning frequency and the damping ratios for minimum vibration at a certain point are the same
as those in the case of the minimum mean square motion for the whole plate. That means the mean square
motion would be minimum when the vibration at a single point of the surface is minimum.

Secondly, the vibration response in HN optimization and the mean square motion in H2 optimization
would be reduced when the equivalent mass ratio e is increased under the optimum tuning condition.
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That means a higher mass ratio and an attachment point of the absorber having higher modal response should
be chosen for the suppression of vibration for the whole plate or at one point of the plate. This finding is
different from that of Jacquot [10] who showed that there would be an optimum mass ratio for minimum
mean square motion of a vibrating plate under random excitation.

Thirdly, based on the expressions as shown in Tables 1 and 2 for the heights of the fixed points in the
response spectrum for HN optimization, it is found that the heights of the fixed points in the (dimensionless)
displacement response spectrum are higher than those of the (dimensionless) velocity response spectrum and in
turn higher than those of the (dimensionless) acceleration response spectrum.
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